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ABSTRACT. The use of protein electrophoretic data for determining the relationships among species or popula- 
tions is widespread and generally accepted. However, posttranslational modifications have been discovered in 
many of the commonly analyzed proteins and enzymes. Posttranslational modifications often alter the electropho- 
retic mobility of the modified enzyme or protein. Because posttranslational modifications may affect only a frac- 
tion of the total enzyme or protein, an additional staining hand often appears on gels as a result, and this may 
confound interpretations. Deamidation, acteylation, proteolytic modification, and oxidation of sulfhydryl groups 
are modifications that often result in an electrophoretic mobility shift. Sialic acid-induced heterogeneity has 
been documented for many enzymes, hut neuraminidase treatment can often remove sialic acids and produce 
gel patterns that are easier to interpret. In some cases, ontogenetic and tissue-specific expression may be due 
to posttranslational modifications rather than gene control and restricted expression, respectively. Methods of 
preventing, detecting and eliminating posttranslational modifications are discussed. Some posttranslational mod- 
ifications may be useful for detecting cryptic genetic polyrnorphisms. C ~ M P  BIOCHEM PHYSIOL 118A;3:551-572, 
1997. O 1997 Elsevier Science Inc. 
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INTRODUCTION ( 120) determined that some "electromorphs" of xanthine 

Protein electrophoretic techniques have been and continue 
to be widely used and accepted tools in systematic and 
population studies of vertebrates and invertebrates (6,27, 
68,119,165,262,277,283). However, there are many factors 
that can affect the results of an electrophoretic study. Some 
investigators discussed briefly the presence of "extra" 
proteins which were posttranslational modifications or non- 
genetic in origin; the possible ramifications of such varia- 
tion with regard to systematics has rarely been consid- 
ered (21,26,130,152,153,177,187,268). Murphy et al. (178) 
discussed causes of posttranslational modifications (both 
genetic and nongenetic), cautioned against their occur- 
rence and suggested ways of avoiding and detecting such 
variation. Finnerty and Johnson (71) and Johnson et al. 

dehydrogenase (EC 1.1.1.204) and aldehyde oxidase (EC 
1.2.3.1) were actually posttranslational modifications due to 
at least two modifier loci; they also provided an in-depth 
discussion of the potential impact of such phenomena on 
levels of polymorphisms. Titus (255) investigated the use of 
recently road-killed vs live-caught amphibians and observed 
anodal, secondary isozymes for nine commonly used en- 
zymes. The secondary isozymes were present in both road- 
killed and live-caught samples and "made the scoring of 
polymorphisms difficult at times . . ." [(255), p. 151. 

The number of isozymes or allozymes (= multiple stain- 
ing bands on a gel) expressed has been shown to be affected 
by temperature, diet, pH, photoperiod, sex, female repro- 
ductive state, posttranslational changes, sample processing 
procedures, storage time, pollution, disease, parasites, and 
other stressors [see (193,194)l. Misinterpretation of nonge- 
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en2yme.s and proteins that result 111 altered electrophoretic refer (90,91,1lc4,259,290,291) and specifically fclr posttrans- 
mobility and discuss rnethods that will assist in detecting Ii~tional modifications involving lipids (33,220). 
and eliminating such problems. There are ;I r-turnber c-rf mechanisms by which multiple 

A numher of investigators have ciiscu.ssed nc-rmencl;~turc products arise from ;I single gene [compiled from (22,52, 
pertaining to isozymes ( 1  39,161,165,173,185,214,277,278, 145,216,217,288,289)l: 
285). Rothe (214) provided the most detailed discussion of 
isozyrne nomenclature and considereil isozymes A-rrmed hy 
indirect genetic mechanisms to he secondary isozymes, and 
this tertll will he used herein clue to hot11 its generality in 
meaning ancl its prior usage in earlier literature [e.g., 
(73,227,255)). 

Abbreviations 

Abbreviations for enzymes generally follow Shaklee ~ . t  ctl. 
(225) and Murphy et nl. (178), and standard names a11J En- 
zyme Commission numbers t;,llow the Internationill Union 
of Rinche~nistry and Molecular Biology (1 15): ;icetylcholin- 
esterase ( AChE), EC 3.1.1.7; acid phosphatase (ACP),  EC: 
3.1.3.2; alkaline phosphatase (ALP), EC 3.1.3.1; a-atnylase 
(AMY), EC 3.2.1.1; hutyrylcholinestcG~se (BChE), E(: 
1.1.1.8; catalase (CAT),  EC 1.1 1.1.6; crei~tine kinilse (CK), 
EC 2.7.3.2; cholinestera.se (ChE) (AC'hE and/or RChE?), 
EC 3.1. I.-; cytosol a~ninopeptidase (CAP) ,  EC 1.4.11.1 
(formerly leucine arninopeptidasr); rstcrases (EST), EC: 
3.1.1 .-; glucose-6-phosphate I -clehydrogenasc (GhPDH), 
EC I .  1.1.49; glyceraldehyde-33phosph~ite dehydrogen;~se 
(phosphorylating) (GAPDH), EC 1.2.1.12; glycerol- Z -  
phosphate dehydrogenase (NAI)' ) (C;3PDH), EC: 1 .  I .  1 3; 
glucose-6-phosphate isomerase ((;PI), EC 5.3.1.9; herl~o- 
glohin (HB); lactate ilehydrogen;lse (LLIH), EC: 1 .1 .1 .27 ;  
malate dehyjrogenase (MLIH), E(: 1 . 1 . 1 . 3 7 ;  eso-a-hiali- 
dase (co~nmonly referred to as neur;lminiclase or. slalid:lse) 
(NEU), EC 3.2.1.18; ~>hosphoglucc-r~iic~tase (PGM), Ec: 
5.4.2.2; transferrin, TF. Other ahbrevi;~tions: siillic ; ~ c i ~ l  ( N -  
acetyl neuraminic acid) (Sia), ethylencilian1inctetr;laceratc. 
(EDTA). 

POSTTRANSLATIONAL MODIFICATION 
In Vivo Modifications 

Of the many ways in wl~ich the structure of it polypepticle 
can he modified, changes in its prim;lry structure arc proh;~- 
hly most important (264). Sonic of t h e e  alteration> m;ly 
render the protein completely or partiiilly inactive‘, whilt. 
others may enhar~ce the activity under cert;~in conelition\. 
Uy and Wold (264) listed ;I tot;~l of  140 pohsihle ;lnlino ;~cicl 
forms, which inclucled the 20 "primary" i~mino ;1c1~1s plu> 
forms cterived from phosph(1ryIatior1h, deamid;~tions, ;ICC- 

tylations, and methylations to name just ;I few. Wolil (288) 
and Harding (92) re\+weci 111 zlitlo posttranslational nlodifi- 
cations of proteins, and shoul~l he referreel to conierniny 
pc~sttr:tnslatit,nal modifications that have not heen Jib- 
cussed herein. There are additional compilations :I \.;lrierp 
of posttrand;~tional modifications to which the re;lcier ni;ry 

Transcriptional 
-Alternate transcription ( > I  pre-mRNA transcrihecl) 

Posttranscriptional 
-Alternative splicing (different rnRNAs produced fro111 

I pre-niRNA) 
-Alternate tr;~nslation (> 1 polypeptide translated from 

- - .  

1 mRNA) 
-C:ot~~nslational (;imino acids modified on polypeptide 

before release from polysome) 
-Posttranslatic~nal (polypeptide modified after release 

from polysorne) 

LJy and Wold [(264), p. 8941 stated that ". . . only a t;;lc- 
tion of the molecules of one kind are modified.", and Dyk- 
h~lizen c't 01. (61 ) reported this R-rr Escherichia coli ALP. Most 
of the posttranslational modifications discussed herein can 
produce at least one adclitional staining fraction [e.g., (60, 
89,92)]. Therefi~re, two or more forms of the enzytne may 
he prebent, one being the original, transcribed product ancl 
the other being a modified product. If these different ic~rtns 
of ;in enzyme are all catalytically active, they [nay appear 
OII EGIS as ~ilultiple bands, indicating the presence of several 
L,. ~so:ymes" or "allozymes" when, in fact, there is only one 
enzyme. The formation of isozymes due to in %litlo mocIific;~- 
tic-rnx ailcls yet another possible c:luse of variation which 11i;1y 
he t;llsely construed ;IS heing genetic in origin (74,178,187). 
Fi\,e of the 20 "primary" amino acids are charged and usetill 
in that they reveal genetic differences through charge difkr- 
cnccs. The five charged amino acids are lysine (+),  arginine 
(+  ), Iiistiiline (+),  ;Ispartic acid ( - )  and glutamic acid ( - ) .  
I'rotcinx with a net positive charge migrate toward the ncga- 
I i\,e (c;~thodal) pole during gel electrophoresis, while pro- 
tein\ with a net negative charge move toward the positive 
(anoclal) pole (261). Posttn~nslational modi6catinns c;ln al- 
ter the charge of the genetically-encudecl arnino acicl atid 
cithel- mask genetic differences or produce apparent differ- 
ence\. In Drusophila tnelanogclster, superoxide dismutase (EC 
I .  I 5.1. I ) al1o:ymes differing hy only onc amino ;~ciil (lysirle 
(+ )  vs ;Ispartic acicl ( - )  or asparagine (11)) exhihited iliffer- 
ent electrophoretic tnohilities, while other superoxiile clis- 
Inut;l>e ;~llozymes cliffering hy two substitutions (histidine 
( + )  :111il proline ( n )  1,s xerine ( n )  and either glutamic acid 
i -- ) or glutarninc ( n ) )  were electrophoretic;iIly identical 
( 14 3 ) .  Clohhs and Prakash (42) also ~nentioned several cases 
ivhcre a ,ingle ;rmino acid substitution resulted in ;I ch;ungc 
111 electrophoretic mc~hility. Many c ~ f  the posttranslational 
~noditications listed in Tahle 1 occur in the charged amino 
.~ciils ancl the @NH1 group, and the listed eI1:ymes are rou- 
r itlely used in tilsonomic, systematic, and population ce- 
nc'tic research. Modified enzyrncs may remain cryptic with 



Posttranslational Changes and Electrophoresis 553 

TABLE 1. Commonly used enzymes or proteins that are known to be modified by some posttranscriptional process (reversible 
and irreversible). Many of the cited cases result in a change in electrophoretic mobiity 

Enzymelprotein Modification Reference(s) 

Aspanate aminotransferase (EC 2.6.1.1) 

Acetylcholinesterase (EC 3.1.1.7) 

Acid phosphatase (EC 3.1.3.2) 

Adenosine deaminase (EC 3.5.4.4) 

deamidation 
carbamylation 
aggregation/dissociation 
proteolytic modification 
sulthydryl oxidation 
carbam~lation 
sulthydryl oxidation 
aegreeationldissociation 

Alcohol dehydrogenase (EC 1.1.1.1) 
acetylation 
deamidation 

Adenylate kinase (EC 2.7.4.3) 
cofactor binding 
Na-acetylation 

Alanine aminotransferase (EC 2.6.1.2) 
Alkaline phosphatase (EC 3.1.3.1) 

acetylation 
carbamylation 
acetylation 
proteolytic degradation 
immunoglobulin-conjugat~on 
aggregation/dissociation 
phosphorylation 
glycosylation 
glycogen binding 
deamidation 
immunoglobulin-conjugation 
methylation 

a-amylase (EC 3.2.1.1) 

Butyrylcholinesterase (EC 3.1.1.8) 
Carbonate drhydratase (EC 4.2.1.1) 

~ ~ a c e t ~ l a t i o n  
albumin-conjugation 
glycation 
deamidation 
acetylation 
Na-acetylation 
aggregation/dissociation 
deamidation 
sulfhydryl oxidation 
proteolytic modification 
immunoglobulin-conjugation 
phosphorylation 
methylation 
deamidation 
Na-acetylarion 

Catalase (EC 1.11.1.6) 

Creatine kinase (EC 2.7.3.2) 

Citrate (si)-hynthase (EC 4.1.3.7) 
Cytclchrome s (EC 4.4.3.-) 

Cytosol aminopeptidasc (EC 3.4.11.1 ) 
Enolase (EC 4.2.1.1 1) 

methylation 
carbamylation 
pho~phor~lation 
acetylation 
deamidation 
Nu-acetylation 
carhamy latinn 
deamidation 
aggregation/dissociation 
carbamylation 
deamidation 
proteolytic modification 
proteolytic modification 

Esterase (E(: 3.1.1 .-) 

Fructose-hisphosphate aldolase (EC 4.1.2.13) 

Fructose hisphosphatase (EC 3.1.3.1 1 ) 

Fumarate hydratase (EC 4.2.1.2) 
Glyceraldehyde-3-phosphate dehydrogenase 

(phosphorylating) (EC 1.2.1.12) 

N"-acetylation 
deamidation 
Nu-acetylation 
acetylation 
deamidation 
carbamylation 
acetylation Glutamate dehydrogenase (EC 1.4.1 .-) 
aggregation/dissociation 

Glycerol-3-phosphate dehydrogenase(NAD+) (EC 1.1.1.8) acetylation? 
deamidation 
proteolytic modification 
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Pyruvatr kinase (EC 2.7.1.40) 

Plaslninugen 
Superoxide dismutase (EC I.  15.1.1 ) 

Succ~nate-C)A ligase (EC  6.2.1.4-5) 

Tyros~ne transaminase (EC 2.6. I .  5) 

Transtcrrin 
Triose-phosphate isornt.r;~st. (EC 5.3.1.1) 

Urease (EC 3.5.1.5) 

Lactate dehydn~genasc (EC 1.1.1.27) 

Malara dehydrogenase (dzcarh~~xylating) (EC: 1.1.1.39) 
Nucleoside-triph~)sphate pyrophosph;ltasc (EC: 3.6.1.19) 

Peptidase (EC 3.4.1 1 .--) 
Peroxidase (EC 1.1 1.1.7 ) 
Phosphoglycrratc mutase (Et-: 5.4.2.1 ) 

Ph~laphogluct>niltt' dehvcLr<~ger~;~w (E(: I .2. I .44) 
Phvsphoglycrrate kinase (EC 2.7.7.3) 

TABLE 1. (Continued) 

Enzymeiprotein 
-- Modification Reference(~) 

Glucose-6-phosphate I -dehydrogenaw (EC 1.1.1.49) ~iearniciatic>n 208, 231 
crIfactor hindlng 10, 35 
.~ggrr~t ion/dissocia t i t~n 131, 295 
prote~n-cc~njugation 131 

Glucose-6-pl~us~hate l.\omcrase (EC 5.1.1 . Y )  .rcetylation 257 
N"-acetyiatit)n in 88 
proteolyt~c moditicat~k~n in 88 
;~gyrc~t i~~n/dissc ,c i :~ t ion  in 88 
sc~lthydryl oxiilat~c~n 87. in 88, 182. in 214 
c,rrhamylation 189 
~1yc;aricin 45, in 92, I57 
<rcetylat~on 157 
Nu-;~cctylation 20. 25, 92, 172. LO0 
c;trh;lrnylat~on 92 
oxiciation 24 3 
;1ggrcgatiort/dissocii3rron 132, 199, 204, 243 
proteolptic modification 132 
I Inptoglohin-conjugation 186 
dearnidat~on 172 
\ulthyJryl oxidati~)n in 214 
proteolyr~c rnoditicat~on in Z14 
;rggregation/dis~ociatiot~ in 214 
IJhiqu~rin-cnnjugati~~~~ 156 
~tcamidi~tion 99. 2GH, 287 
p h o b p h ~ r ~ l i t t ~ t ~ ~ ~  46, 47 
i~n~nunciglohulin-conjugation in 244 
~ ~ ~ l i h ~ ~ l r v l  oxidation 165, in 214 
cotilctor binding 40, 285 
c~intorntat~onal (!) 203, 205 
~le:i~nici;~tion 208 
:~~t(regari~~n/Jissc,ciat io~i  111 214 
c;~rham~lacit)u I89 
;rggwy:rt~~)n/Jissociatio~i in 214 
~ulfhydryl osid;ltion 110 
Nu-:icetylaticin 20 
\ t~ l th~dry l  osiiiatic~n I10 
ilc;rmid;rt~on 2178 
ph~~sphorylation 46 
c ;~rhnmyl ,~r io~~ 189 
z;rrh;umy lntion 189 
;tcetylation 257 
c.trh;imvlar~t)n 189 
~ ~ l t h y d r y l  ~~xiclati~in 53, 54, 73, I10 
~Ie ;~~t~i~l : r t ion 208 
c,rrhamyl;~rir~n I89 
,~cctylation 257 
~ Ie :~n~ ida t~ tm 208 
aulthydryl o x ~ ~ l a t i c , ~ ~  R 
prott.olyt lz ~ix)dif;ci~tio~t in 214 
~lea~uiciation 2 08 
ylycosylatic~n 2 54 
glycation 252 
N"-;tcctyl;>r~~~n 20 
ph1)sph<lrylation 7 
\ulflt\;dryl ouid:rt~on 7 
pliospl~~~rylatio~i 94 
N"-;~cetylarion 94 
p n ~ t e c ~ l ~ t i c  modification 94 
c;rrh;u~t~lat~on 122 
~ l c ; ~ ~ n i ~ l ; ~ r i o n  208 
iica~nidarioti in 88, 23 1, 296 
c.,irl~amyl~trior~ 189 
~ult11)~~Iryl oxidatic~n 7 2 
.rggret(ation/dissociittion 72 
~ r ~ l t l i v d r ~ l  oxiJation 110 
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one technique and be detected by another. For example, 
fructose-bisphosphate aldolase (EC 4.1.2.13) and G6PDH 
appeared unchanged by gel electrophoresis, but isoelectric 
focusing discriminated between primary and secondary iso- 
zymes (60). Some protein modifications are enzyme-cata- 
lyzed, while others are not (264,290,291). 

Kaplan (124) and Shaw (227) provided the earliest dis- 
cussions of "nongenetic isozymes." Deamidation, acetyla- 
tion, proteolytic modification, aggregation, changes in con- 
formation, and differences in bound molecules were cited 
as some of the known factors involved with the formation 
of secondary isozymes (Table 1). Rothe (214) produced an 
excellent review entitled, "A Survey on the Formation and 
Localization of Secondary Isozymes in Mammalia," which 
discussed the posttranslational formation of "isozymes." 
Rothe (214) examined nine causes of secondary isozyme 
formation including: aggregation and polymerization, oxi- 
dationlreduction, proteolytic modification, variation in car- 
bohydrate groups, deamidation, aggregation of substrates 
and cosubstrates, temperature, pH, and conformational 
changes. Some of the cases from Rothe (2 14) were included 
here; however, it is recommended highly that the reader 
refer to Rothe (214) for additional information and refer- 
ences. Webster and Murphy (280) cited several literature 
reports of posttranslational modification as the cause of sec- 
ondary isozymes (e.g., GAPDH and triose-phosphate iso- 
merase, EC  5.3.1.1). Murphy et al. (178) povided examples 
of posttranslational modification on zymograms for GPI and 
MDH (their Figs. 14 and 17, respectively). Posttranslational 
modification was considered to be involved in mannose- 
6-phosphate isomerase (EC 5.3.1.8) variation observed in 
kidney and muscle tissue of Crotalus u. uindis (177). 

Deamidation 

Deamidat~on (AsnjAsp  or Gln+Glu) is a common post- 
translational modification (287) that can alter the charge 
and possibly migration of a polypeptide in a gel matrix. De- 
amidation can occur both enzymatically and non-enzymati- 
cally (208). Additional AMY isozymes observed in chickens 
were considered posttranslational modifications of AMY1 
and AMY and deamidation of asparagine or glutamine res- 
idues was thought to be the probable mechanism for the 
additional isozymes (144). Karn et al. (126,127) studied hu- 
man AMY and identified the processes of deamidation and 
glycosylation/deglycosylation as the causes of posttransla- 
tional modifications of this enzyme. The deamidation of two 
Asn residues in LDH B4 may be responsible for its ability 
to function as a structural protein in eye lens rather than 
its normal catalytic function, even though both are encoded 
by only one gene (99). Eye lens enzymes are relatively long- 
lived since the cell nuclei are lost following differentiation 
into fibers; therefore, the enzymes may be more prone to 
posttranslational modifications during the course of their 
relatively long existence. Several other enzymes, G6PDH, 
triose-phosphate isomerase and nucleoside-triphosphate 

pyrophosphatase (EC 3.6.1.19), in eye lens and other tissues 
exhibit anodic secondary isozymes attributed to deamida- 
tion (231,296). Also, new TF isoforms appear as a result of 
deamidation (207). Deamidation is accelerated by ascorbic 
acid and 02, and deamidation rate is also dependent on pH 
and neighboring residues in the polypeptide (207,208). 

Acetylation 

Allfrey et al. (5) indicated that acetylation of a lysine E- 

amino group (resulting in the formation of E-N-Acetyl- 
lysine) will neutralize its positive charge, and the electro- 
phoretic mobility of histone H4 varies according to the 
number of acetylated lysine residues. .4cetylation of HB 
may be responsible for observed heterogeneity in some 
cases (132), and acetylation of the N-terminal amino acid, 
which normally contributes a positive charge, results in a 
neutral charge. Such a change to one chain type in HB 
would result in a loss of two positive charges and likely re- 
sult in a mobility difference in gel electrophoresis. Some 
human HB have acetylated N-termini (172). Three fish 
species from three families (Salmonidae, Cyprinidae, and 
Catostomidae) and Rana catesbeiana tadpoles have a chain 
acetylation of the N-terminal serine residue (25,163,200). 
Commonly analyzed enzymes known to be N-terminally 
acetylated in some taxa are GAPDH, GPI, phosphoglyc- 
erate kinase (EC 2.7.2.3), glutamate dehydrogenase (EC 
1.4.1 .-), alcohol dehydrogenase (EC 1.1.1 . I ) ,  carbonate 
dehydratase (EC 4.2.1.1), adenylate kinase (EC 2.7.4.3), 
pyruvate kinase (EC 2.7.1.40), enolase (EC 4.2.1.1 I ) ,  
fructose bisphosphatase (EC 3.1.3.1 1 ), and superoxide dis- 
mutase (257). Moss and Thomas (175) experimentally acet- 
ylated ALP isozymes in uitro, and electrophoretic mobility 
was altered following acetylation. N-terminal acetylations 
are catalyzed by amino-terminal acetyltransferases and can 
occur either cotranslationally or posttranslationally (258). 
Acetylation may be involved in the ubiquitin-protein de- 
gradation scheme (102). 

Proteolytic Modification 

Secondary isozymes of CK, HB and fructose bisphosphatase 
can be the result of peptidase cleavage of terminal residues 
(64,132,192,195-197,244). Wright et al. (294) discussed 
apparent proteolytic modification of LDH B from pyloric 
caeca and intestine of rainbow trout. Active BChE mono- 
mers, dimers, and trimers in human serum were considered 
degradation products of tetramers resulting from proteolytic 
modification (146). Some carb~x~peptidase activity can be 
reduced or eliminated with EDTA or amercaptoethanol 

(63). 

Phosphorylatiun and Carbamylation 

Phosphorylation of CK subunits resulted in electrophoretic 
heterogeneity and also affected the apparent Michaelis- 
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Menten constant for phosphocreatine (202). Phosphoryla- 
tion of histone HI  alters the electrophoretic mobility and 
complicates gel pattern interpretation (166). Carbamyla- 
tion can alter electrophoretic mobility of enzymes and pro- 
teins. Papayannopoulou rt al. ( 189) examined the effects 
of in vitro and in tielo cyanate treatment on electrophc~retic 
mobility of 25 enzymes and HB in red cells and the same 
enzymes in brain, liver, kidney, and muscle. All 75 enzymes 
were carbamylated in e~itro, while only 15 of 25 were affected 
by in vizlo treatments (ACP, CAP, EST, GPI, GAPDH, 
MDH, PGM, phosphogluconate dehydrogenase (decarbox- 
ylating, EC 1.1.1.44), triose-phosphate isomerase, phospho- 
glycerate kinase, phosphoglycerate mutase (EC 5.4.2. I ) ,  
aspartate aminotransferase (EC 2.6.1.1 ), alanine amino- 
transferase (EC 2.6.1.2), adenosine deaminase (EC 3.5.4.41, 
enolase as determined hy the appearance of new bands of 
activity with increased anodal migration on starch gelh. 
Johnson rt al. (122) presented evidence that 2 of' 3 tyrosine 
transarninase (EC 2.6.1.5 ) isozymes from rat liver were ~ c -  
ondary isozymes, and Hargrove and Granner (94) found 
that tyrosine transaminase may modified hy phosphoryla- 
tion, N-terminal acetylation, a n ~ l  proteolytic modification. 
Carhamylatic~n by cyanate in zlitro prcduced similar, if not 
identical, isozymes. Additional discussion of cyanate effecta 
on enzymes and proteins was providril hy Harding (92).  

Masters and Holmes (165) cited several c a m  of epigenetic 
enzyme variation (EST, MDH, G6PC)H, CAT, CK, and car- 
bonate dehydratase), and specitically, subhanding of LIIH. 
Reducing agents reverted rnultiple hands of LI3H-A, into 
one band, while incubation with glutathione resulted in thc 
multiple pattern once again. Taketa and Watanabe (250) 
were able to eliminate or produce some firms of three "ma- 
jor" G6PLlH isozymes from rat liver with various chemic;il 
treatments. The same treatments produceci si~liilar result5 
on G6PL)H from human liver and erythrocytes (776) ;tnJ 
suggest that oxidation of sulfl~ydryl groups may he responsi- 
hle for the heterogeneity. Reelectrophoresis of ;my single, 
G6PDH hand always resulted in only one staining hand. 
Llawson and Jaeger (54) examined PGM in 18 species; PGbl 
exhibited stable phenotypes even ;~ftcr ~ntrnths of frozen 
storage, however, aging (of chicken liver resulted in ;tltered 
patterns of PGM on starch gels. The addition of tnerc;lpto- 
ethanol did not affect the altered p;ittrrns, while 17-chloro- 
mercuribenzoate added to fresh sampleb ch;~nged the 11orm;rl 
pattern into a pattern similar, hut not identical to the aged 
pattern. Sulfhydryl groups a t  PC3M were most lil\cly in- 
volved in the moditied patterns (54). 1)awson anil Mitchell 
(5 5 )  examined the interconvertibility {jf ~namm;llinn PGM 
is(1zy mes. 

Fisher ancl Harris ( 7 3 )  studied PGM iaozymes in order to 
determine the cause(s) of addition;ll :ones of activity be sing 
starch gel electrophoresis. Seven thiol reagents were tested 

on the products of three PGM loci in human tissues. Phos- 
phoglucomutase,, PGMr, and PGM, each exhibited nonge- 
netic variation in at least one tissue or cell type. In placental 
extracts, one or two secondary isozymes often appeared after 
storage, which was coincident with a loss in staining in- 
tensity of the two PGMi isozymes (one primary and one 
secondary isozyme). Treatment of PGMi isozymes with 
oxidized glutathione produced a number of different phe- 
notypes (Fig. 1). Without knowledge of the effects of the 
thiol reagents, Fisher and Harris (73) believed the PGM 
:ymograms may have been interpreted incorrectly. Interest- 
ingly, the PGM phenotypes described for the guppy, Poecilia 
reticulata, by Shami and Beardmore (226) were identical to 
the possible phenotypes described by Fisher and Harris 
( ( 7 3 ) ,  Fig. 11. Shami and Beardmore (226) did not use a 
thiol reagent; therefore, the secondary PGM isozymes may 
have heen oxidized at the sulfhydryl group(s). The variation 
In P. rcticulata appeared to be inherited as shown by brced- 
ing data (226); therefore, it is pc~ssible that an allele encod- 
ing ;I PGM with ;i cysteine substituted for a neutral amino 
;tciil was present and remained cryptic until the cysteinyl 
sylthydryl was oxidized. Hopkinson (1 10) descrihecl just 
\uch a phenomenon and its usefulness for detecting ;I ge- 
netic polymorphism in human GPI. 

Conjugation, Polymerization and Dissociation 

I ~ ~ t n e r  and Skillen [ ( I  39), p. 21 noted that ". . . tnultiple 
h;tnds may he produced by cornhination with different non- 
e~~zymatic serum proteins." Some additional LL3H hands 
h ~ ~ v e  been attributed to LDH conjugated to an immuno- 
:Iohulin; irnmunoglohulin has been tbund cnmplexed with 
(:K, ALP and AMY as well [(29,37), references in (66, 
I48,169,244)]. A size \.ariant ot RChE from  plasm;^ .ilr;t5 ;tc- 

PCM, Rrduccd 2 Redarcd 2-1 Reduced I Part oxidizcd 1-1 Part o x l d l z ~ d  I F u l l ~  orldlzed I 
phcnollp* 

0- 

part orwJ#zed 2 lullv orldlzrd 2 1 ~ 1 1 ~  o x l d l t ~ d  2-1 
0, 

part oxldlxed 1-t 

( 1 ' 1 1  (112) (212) 1113) (213) (1,3l 

FIG;. I .  Effects of different oxidation states of PGM, on for* 
mation of secondary isozymes with unique electrophoretic 
mobilities. Oxidationlreduction states are given below each 
phenotype, and the corresponding Poecilia reticulata phe- 
notypes from Shami and Beardmore (1978) are given in pa. 
rentheses. Reprinted from R.A. Fisher and H. Harris, "See 
condary" isozymes derived from the three PGM loci. Ann. 
Human Genet. 36:69-77, Copyright (1972) by Cambridge 
University Press, reprinted with the permission of Cam- 
bridge University Press. 
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tually a BChE monomer bound to albumin by a disulphide 
bond (36). Heterogenous HB patterns have been shown to 
be the result of polymerization, dissociation, autoxidation 
and preparative method (199,204). Polymerization of HB 
can occur both in vivo and in uitro; polymerized HB are also 
referred to as heavy HB. Houston (1 12) detailed electropho- 
retic methodology for separation of fish HB and cautioned 
against assuming that each staining band represents a differ- 
ent hemoglobin due to the presence of oxy and deoxyhe- 
moglobin and free HB vs HB-haptoglobin complexes [for 
example of latter see (186)). 

Enzymes or proteins that are lipoproteins or membrane- 
bound and possibly subject to exhibiting "polymorphism" 
due to the lipid component (which may depend on diet or 
ambient temperature) include ALP, AChE, EST and succi- 
nate deh~drogenase (EC 1.3.99.1) [(59,65), in (91), (96,97, 
135)]. 

Clausen (40) found that NADH had an effect on the 
mobility of human LDH isozymes; each of the 5 LDH tetra- 
mers experienced an increase in mobility that was a func- 
tion of the concentration of NADH (the NADH is added 
to extracts, then electrophoresed, and this is when the dif- 
ference in mobility is effected). Wilkinson (285) found 
NAD increased the mobility of LDH, and NADP altered 
the mobility of G6PDH (10,35). Secondary alcohol dehy- 
drogenase "isozymes" in D. melanogaster were the re- 
sult of bound NAD' or an NAD-carbonyl compound (1 16, 
223,260). Controlling the degree of saturation of the pro- 
tein with coenzyme in the extract before electrophoresis 
should help eliminate the effect of coenzyme binding. 

Bergman et al. (16) discovered mobility altering of 
G6PDH and phosphogluconate dehydrogenase with hepa- 
rin, a commonly used anticoagulant for blood collection; 
both enzymes from human, bovine, equine and canine 
blood exhibited altered mobilities due to heparin. The ef- 
fect was present on starch gels, but not on agarose gels. Hu- 
man phosphogluconate dehydrogenase patterns returned to 
normal after five days storage at 4OC (16). Heparin also in- 
teracts with cytochrome c, changing the thermal properties 
of the protein (9). Two forms of extracellular superoxide 
dismutase (and several other enzymes) have affinity for hep- 
arin; one superoxide dismutase has strong affinity and the 
other intermediate affinity [(125) and references therein, 
(162)]. Heparin most likely binds at the C-terminal end of 
superoxide dismutase which contains nine positively- 
charged amino acids (105). Although it has not been deter- 
mined if heparin binding alters the electrophoretic mobility 
of this superoxide dismutase, it seems quite possible, espe- 
cially if some of the positive charges are masked. Heparin 
effects on other enzymes and proteins should be investi- 
gated. Heparin degrades upon exposure to light (206), and 
this may cause even more heterogeneity. Sun (224) noted 
that CK activity can be inhibited by EDTA, citrate and 
fluoride and that CK is unstable in light. Smit et al. (232) 
comparecl effects of the commonly used anticoagulants, 

EDTA and heparin, on fish blood and concluded that hepa- 
rin was preferred over EDTA due to the alteration of a num- 
ber of parameters (pH and hematocrit) by EDTA. EDTA 
lowered the blood pH by over 1 pH unit at higher concen- 
trations, while heparin caused only minute changes at any 
concentration. 

Other Interconvertible " I s o ~ e s "  

Escherichia coli citrate (si)-synthase (EC 4.1.3.7) existed in 
three ele~trophoreticall~ distinct isozymes, but was found 
to be an active tetramer in dynamic equilibrium with oc- 
tameric and monomeric states as well (51,293). Reelectro- 
phoresis of any one band resulted in the same three bands 
observed initially (51). Thus, the three bands of activity 
on gel electrophoresis resulted from migration of inactive 
monomers, inactive octomers and active tetramers, and fol- 
lowing electrophoresis, some of the monomers and octomers 
formed active tetramers, which were visualized on the gel. 
Frydman et al. (76) studied the processes responsible for the 
in vivo interconversion of various forms of rat liver biliver- 
din reductase. They found three catalytically active forms 
of the enzyme. Molecular form 1 could be converted to form 
3 by treatment of live rats with CoClz or phenylhydrazine. 
Molecular form 3 could be converted back to form 1 in vitro 
with the addition of reduced thioredoxin. The above in vivo 
treatments had no detectable effect on either spleen or kid- 
ney biliverdin reductase which exists only as form 1 in these 
tissues. The interconversion of form 1 to form 3 involved 
the de nowo synthesis of mRNA and protein since the addi- 
tion of cycloheximide and actinomycin D halted the inter- 
conversion of form 1 into form 3. Form 2 was also present 
in minor amounts, but the genesis of this form was not de- 
termined. Frydman et al. (76) concluded that form 3 was 
an enzymatically driven posttranslational modification of 
form 1, possibly due to the formation of a disulfide bridge 
between neighboring cysteinyl sulfhydryl groups (the oppo- 
site effect produced by reduced thioredoxin). Thioredoxin 
is responsible for regulating enzymic ;activity by breaking 
disulfide bonds (242). 

Sialic Acids and Carbohydrates 

Nonenzymatic glycosylation [glycation sensu (252)l of HB 
has heen demonstrated, and many sugars are known to cova- 
lently bond to HB at either the a-amino terminal residue 
or at the &-amino group of lysine (92). Glycated HB can 
constitute up to approximately 10% of the total HB; HB 
AIc can occur up to 4% in normal subjects and up to 10% 
in diabetics (92). Normally, 20% of HB can he glycated at 
lysine &-amino, but can excede 50% in diabetics. Glycation 
may be responsible for some HB isoforms visualized on gel 
electrophoresis. Harding (92) also discussed many other 
cases of modified HB, and many of the HB exhibited altered 
electrophoretic mobilities. 
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Sialic acid is a general tern1 firr the many known varieties 
of N-acetyl neuraminic acid derivatives (19,48), and they 
are often the end molecule on an already co~rlples assem- 
blage of sugars, hut several other Sia attachment schemes 
are known (48,114,201). The enzyme, NEU, i h  used to 
cleave the negatively-charged Sia from carhohydrate chain 
attachment sites. The negati1.e charge of Si;l often alters 
the electrophoretic mohility of the ;~ff;cted protein (see 
cases cited below). Sialic acids are quite common in tishes, 
and Warren (274) rave an extensive list of fish specie5 
known to contain Sia. Corfield anil Schauer (48) covcrecl 
Sia distribution f;cr~m hacteria to man, and more recently, 
Roth et al. (213) discovered Sia in D. meluno~guster, ~ncluil- 
ing a Sia form called polysialic acid that was only present 
in early developmental stages. Sources of infc>r~nation on 
Sia are Schauer (215) and Rosenherg and Schengrund 
(21 1). Sialic acids are not the only carhohydrk~te ~noiety 
which can be attached to polypeptides (24,44,86,184,19 1 ,  
240). Therefore, even if NEU successfully c1eave.s off Sia, 
there still remains a carhohydrate moiety that may influence 
the electrophoretic mobility due mainly to coni;wn;ltion/ 
size effects. The remaining carbohycirate chains may he re- 
moved hy other glycosidases, and EnJo H, Endo Ll, and 
Endo F are the three most often used endo-pN-;~cetylglu- 
cosaminidases for cleaving N-linked oligosaccharicies from 
Asn residues (184). Re~noval of the hulk of thr- carhohy- 
drate chain may induce coni;)r~~i;ltic)nai changes anci/or ren- 
der the protein inactive and i~seless ti)r electrophoretic iinal- 
ysis. 

The biological source of the NEU shcruld he spec~tieci In 
the materials and methods section [e.g., (101,239,266)] ;IS 

a future investigator may find contradictory results of NEU 
treatment if  sing NEU from a different sr~urce org;lnisnl, 
especially since NEU from some orgiinisms will not cleave 
certain Sia [e.g., Vihio cholerice NEU and Neu(4,5)ACJ1; 
(44,2 19)J. The ~nethoclology (7f incubating proteins with 
NEU at a high temperature (37°C) for an extenlied ti~rr. 
(24 hr) (266) may introduce non,~enctic vt~riation. Most 
temperate zone tishes never even experience temperatures 
as great as 17°C. Expc-rsurc ofen:ylnes to such a temperature 
would seem to predispose them to at least some degradation/ 
denaturation. Such incubations .should he carrie~l out ; ~ t  ,I 

temperature close to the body temperature ( ~ a m h i e n t  tern- 
perature) of the fish when it was cilpcured (or tempcraturc 
of acclimation). Also, the resulta of NEU treatment cwcr 
rime performed hy Hershherger ( 1131 ) inclicitte that at 37"( :. 
after only 5 min, much of the Sia hiid heen sleavccl. 1)itkr- 
ences in the relative staining intens~ty of hands w7aa evident 
among the various times (5,15,30,60,90, ilnd 1213 ~ n i n  anil 
12 hr); however, at the time intervills ex;~~nined hy Hersh- 
herger, Sia-modified TF still rema~neci ;IS 1-4 hands of stain- 
ing activity, thus not helping to clarify interpretation con- 
cerning the number ot loci. Treatment h r  gre~lter t h m  4 
hr surprisingly resulted in the same pattern ;IS the original 
untreated sample as if the Sia h:td hesome reattachell to thc 

TF! Therefore, NEU treatment for 24 hr may fail to show 
any phenotypic change. Perhaps the NEU lost activity after 
i~pproximately 4 hr. 

Sialic acid-induccd heterogeneity has bcen documented 
fcrr nurilerous enzymes and proteins; glycoproteins known 
t o  exhibit "pc>lymorphism" due to sialic acids or ocher car- 
hohydrate groups include: AMY (?@), AChE [( 15 1,198), 
bee Table 2)], ACP (174,233,275,292), ALP [(49,141,174, 
Ld9,235), in (236), (267,275)], aspartate aminotransferase 
(57), RChE (246,247), C A T  (123), CAP (141), a-L-fucosi- 
clilse [EC 3.2.1.5; in (214)], @galactosidase [EC 3.7.1.22, 
(27511, a-glucosidase (248,292), a-mannosidase [EC 
3.2.1.24, (292 ) I ,  plasminogen (34), TF [(275), see Table 21, 
iuld tropinesterase [EC 3.1.1.10; ( 158)]. Superoxide dismu- 
rase may also he sialylated (254) and therefore, subject to 
electrophoretic heterogeneity. Whitmvre and Goldberg 
(281) stuciied variation o f  Salvriinus fontinalis and Snlt~eiinus 
numayctah ALP (+ additional species); they tested for 
i~ttached Sia hy treating samples with NEU. They found no 
posttranslational moditications due to Sia; however, they 
nc~ted other variation which could have been due to other 
c a r h ~ h ~ d r a t e  mt-rlecules. Robinson and Pierce (209) treated 
human serum ALP with NEU and discovered that much of 
the ohserved heterogeneity was due to Sia. Similarly, NEU 
treatment converted several hands of human kidney ALP to 
bin~ilar, if not identically migrating bands (28). Higashino et 
cii. (104) also reported that some ALP heterogeneity was 
due to Sia attachment. NEU treatment had no efiect on 
C;hPIlH from oncorhynchus mykiss blond and liver (35). 
Heterogeneity of mouse liver C A T  was due to the number 
of Siil attached to the tetramer (123). Pig heart cytosolic 
tiapartate aminotransferase isozy~nes contain Sia and thus, 
heterogeneity may he due to Jifferences in Sia content (57). 
5'-Nuclec-rtidase is a sialoglycoprotein and heterogeneity is 
reduced by NEU treatment [review by (298)J. Law ( 141 ) 
<letccted variation in ALP and CAP in chicken plasm;\ that 
wJil,, Ale to Sia ;in'] suggested that another enzyme was in- 
\,olved that controlled sialylation/desialylation hecause the 
taster moving and more numerc>usly sialylated forms of both 
cnzynies ;llways occurred together, suggesting inheritance of 
sialyltransferases (EC 2.4.99.6-7). Womack (292) corn- 
pilreci published results that reported variation of ACP, a- 
~llannosiclase, and a-u-galactosidase due to inheritance at 
other loci. In all the cases, Jifferences in sialylation of the 
enzymes were heritable; therefore, suggesting the invc~lve- 
merit c~f polymorphic sialyltransferases or NEU. Since ;111 
the 'lhove enzymes were analyzed in the same mouse strain, 
Womack (292) hypothesized that a single gene may exert 
,1 pleiotropic effect on all of the enzymes through sialylation 
[;ilso see (228)]. Similarly, a genetic polymorphism in a siali- 
d;ise may have heen responsible for  nobility differences in 
I:,. rnclanogustn CAP and E S T 4  (43) and in flax (Lin~im 
~isituti.ssimum) peroxiilase (EC 1.1 1.1.7), EST, and ACP 
(69). 

<)gita (183) pre,senteJ evidence that qualitative  nil 
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TABLE 2. Fish enzymes and proteins examined for the presence of sialic acids. AChE = Acetylcholinesterase, EST = Esterase, 
TF = Transferrin, P = present, A = absent 

Species Proteinlenzyme Sia Number of Sia Reference 

Torpedo californica AChE P ? 151 
Ektrophorus electricus AChE P ? 198 
Gambusia afFnis EST P ? 107 
Clupea harenps EST P ? 230 
Saluelinw fontinalis TF P 4! 101 
Cyprmus carpio TF (polymorphic) A - 265 
Barbus meridionalis petenyi TF (c) P 2 237, 238 
Barbus barbus TF (B & I) P ? 237 
Tinca tinca TF A - 238 
Ctenopharyngodon idella TF A - 238 
Chondros toma nasus TF A - 238 
Hypopthalmichthys molitrix TF P 2? 238 
Aristichthys nobilis TF P 27 218 
Silurus glanis TF A - 24 1 
Esox luciw TF P 2 241 
Salmo salar TF P 4 210 

quantitative differences in human serum BChE were due to 
modifying factors such as NEU and/or proteolytic enzymes. 
Svensmark (246,247) and Harris et al. (95) discovered al- 
tered mobilities of human serum cholinesterases after incu- 
bation with NEU. Gasser and Rowlands (82) investigated 
two "variants" of human serum ChE. The "variants" were 
not genetically inherited as shown by family studies, and 
serum exhibiting normal ChE patterns and subsequently 
treated with NEU showed a pattern similar to the "variant" 
ChEs. AChE is a glycoprotein with four asparagine-linked 
oligosaccharides (36,15 1,198) and presumably can bind at 
least four Sia. Human "fetal-type" AChE could be con- 
verted to "adult-typeH AChE with a NEU treatment preced- 
ing electrophoresis (13,80). Edwards and Shaw (65) demon- 
strated a shift in electrophoretic mobility for human red cell 
AChE treated with NEU. Differences in sialylation between 
identical tetramers may explain the 'cold' and 'warm' AChE 
isozymes ibund by Baldwin and Hochachka (11). Sialic 
acids were responsible for at least some apparent "polymer- 
phisms" in herring, Clupea harengus, muscle EST (230). Ad- 
ditional explanations could be alternative splicing or post- 
translational modification, which are responsible for some 
of the known secondary AChE (215,229,253). Another 
possible explanation for the cold and warm AChE isozymes 
is a difference in the glycosyl-phosphatidylinositol anchor, 
which attaches AChE to cell membranes and in some cases 
can be removed with pho~phatid~linositol-specific phos- 
pholipase C (EC 3.1.4.10) [(78,79,149,150), also refer to 
papers in (33)l. Kominami et al. (135) demonstrated that 
the electrophoretic difference between hepatic membrane- 
bound ALP and serum soluble ALP was due to glycosyl- 
ph~sphatid~linositol anchors; treatment of the hepatic ALP 
with phosphatidylinositol-specific phospholipase C caused 
an increase in its electrophoretic mobility, which was iden- 
tical to that of the serum ALP. Tripathi and O'Brien (256) 

discovered four AChE "isozymes" in head extracts of the 
housefly, Musca domestica, using polyacrylamide gel electro- 
phoresis. Examination of the AChE "isozymes" indicated 
kinetic differences among them and seemed to support the 
notion that the "isozymes" were the products of distinct 
genes. However, comparisons between "normal" (suscepti- 
ble) and organophosphorus-resistant strains of flies showed 
the four "isozymes" from the resistant strain were all insensi- 
tive to poisoning to approximately the same degree as com- 
pared to the non-resistant (normal) strain "isozymes." Tri- 
pathi and O'Brien [(256), p. 4021 reasoned that: "Since it 
is very unlikely that four different genes would all have mu- 
tated to produce precisely the same result, we must conclude 
that the catalytic site of all four isozymes is under the con- 
trol of a single gene, and that the variety of isozymes is epi- 
genetic rather than genetic." The genesis of BChE "iso- 
zymes" may also explain those observed for AChE by 
Tripathi and O'Brien (256). Although rare, a true genetic 
polymorphism was discovered for human AChE (12). Ester- 
ases from Gambusia afinis have been shown to be affected 
by Sia attachment (107). They suspected the Sia played a 
role in stabilizing the quaternary structure of the EST. Five 
EST loci were present, but only EST-3 was affected by NEU. 
Upon treatment with NEU, 2 bands of activity were con- 
verted into 5 staining bands and 4 bands were converted 
into 10 bands. It was considered a result of recombination 
of subunits after the dimers had been destabilized by Sia 
removal. However, the treatment of the two forms (which 
were highly "saturated" with Sia) map have produced a se- 
ries of progressively less "saturated" forms, resulting in the 
numerous EST bands (Fig. 2). Esterases from Cepaea nemo- 
ralis were not affected by NEU treatment (187). 

Utter rt al. (262) found EST to exhibit artifacts, and sub- 
sampling results were not consistent. Also, liver EST pat- 
terns of 0. mykiss progeny varied from the expected based 



FIG. 2. Effects of exo-msialidase (neuraminidase) treatment on muscle EST-3 phenotypes of mosquitofish, Gambusia affinis 
(origin at top). Reprinted from Comparative Biochemistry and Physiology, 58B, D.H. Hodges and D.H. Whitmore, Muscle 
esterases of the mosquitofish, Gambusia affinis, 401 -407, Copyright (1977), with kind permission from Elsevier Science Inc. 
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howelrer, so nongenetic effects ilue to storage beem to 1.c. 

ruled out in thia case (262). Allendorf ct al. [(i), p. 4251 
stated: "Inheritance studies have coniirmecl the genetic h;r- 
sis of this variation hut there are indic;~tions of poaihlc o n -  
togenetic and environmental effect5 on the expreshion c~t 
this locus [Est.]" Richar~lson ct '11. [(ZOh), p. 1761 5t;lteil: 
"As a consequence of these prohle~ns the use o i  chterasea in 
allozyrne electrophoresis must he viewed with xo~uc, c;~utiorl 
. . . Investigative work must ululuv.\ accompany the use ot 
any putative esterase locc~a as ;r genetic tnklrker . . . lancl] 
. . . the genetic haais of EST variation shol~lil he cc~ntirnn~cl 
from hreeding data." 

TF are monomeric, nonen;yrn;ltic proteins which hin~i 
and distribute iron (as Fe") in the hoJy (24,75,15i). Many 
reports exist of heterogeneity of TF, and several studieh Il,~ce 
shown that at least some of this hererogeneiry is due to the. 
attachment of Sia or other carhohydratc ch;iins and not dit- 
ferent primary structures (14,17,24,44,239). The nll~nher ot 

iron ;it(ltllh hound per molecule of TF can also intluence 
elcitroj~horetic mohility ( 2  39,297). The alteration in elec- 
trophoretic ~nohility [nay result from the coniormatic~nal 
i l l : l~lr :~> iissociate~l with binding and releasing Fe" ( 1  1 3 ) ,  
;inel TF is c21pahle of hiniling other di- kind trivalent [net- 

;IS well (24), although how this would affect electropho- 
retic mchility has not heen tested. McGovern ;inil Tracy 
( 1 iL.153) iiiscussed many published accounts cc~ve r i~~g  ;I \.;I- 
rletv ot that affect TF ;IIIC~ CAP "clectromorphs." 
On  the other hand, there are studies that co~~clucle true 
cenetic \,ariation does exist in the TF withinlamong some 
\pecic.s c~t'tishes (263,265). Utter ct al. (263) did not en- 
counter unexplained variation of TF phenotypes of rainhow 
trout, and their work included inheritance stl~dies as well. 
Howe~w-, some of the "true" genetic variation may not he 
within the TF themselves, but in the ge~le(s)  which syn- 
thesize sialyltransferases which control attachment of Si;i 
( 1 7 1,: 34). Investigators reporting TF polymorphisms kind 
~ c h o  cliil not investigate these posttranslational rnoditica- 
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tions may have misinterpreted their results; some investiga- 
tors did ~ostulate that Sia may have been responsible for 
some of the observed variation, even when breeding studies 
were conducted (81). In a study of S. fontinalis TF, Hersh- 
berger (101) treated samples with NEU, producing a very 
notable effect upon the TF mobilities and phenotypic ex- 
pression. Hershberger did not state whether he considered 
TF a dimer or monomer, but did mention that more TF 
bands were present than expected. Since NEU treatment 
never resulted in the expression of only one TF band, which 
would be expected for a homozygote (BB or CC) regardless 
of quaternary structure, it is odd that Hershberger did not 
find this result questionable. One probable explanation, es- 
pecially when knowing TF is monomeric and brook trout 
are tetraploid and express some duplicate loci, is that two 
TF loci are expressed in brook trout, then three alleles may 
still be involved. Also, differences in Fe3+ content could 
have caused the banding observed by Hershberger (101). 
Ferguson (68) mentioned Sia as a cause of variation in pi- 
geon (Columba livia) TF; the three banded pattern could be 
reduced to one band after treatment with NEU. Similarly, 
two or three TF detected in humans with starch gel electro- 
phoresis can be converted to one band with NEU treatment 
(24). Chicken TF are also known to have attached Sia 
[(270) and references therein]. Valenta et al. (265) thor- 
oughly evaluated the heterogeneity of TF in Cyprinus carpio; 
their study included inheritance data, starch gel electropho- 
resis, autoradiography, immunoelectrophoresis, molecular 
weight estimation, and NEU treatment. Apparently, the 
observed polymorphism of TF in carp is genetically deter- 
mined, and the carp TF did not contain any Sia (265). Stud- 
ies conducted to date indicate that Sia are present and ex- 
hibit effects in some fish species, while other species do not 
have modified TF [(266), Table 21. 

Tissue-specific and Stage-specific Primary 
and Secondary Isozymes 

Even tissue-specitic expression of proteins, which along 
with some form of detectable structural difference (electro- 
phoresis) is often taken as evidence that the forms are dis- 
tinct gene products, may be due to alternative splicing of 
single gene transcripts (212) or posttranslational modifica- 
tion (18). Multiple mRNA products can arise from a single 
gene. One gene can encode two proteins that are differen- 
tially expressed between sexes [Baker in (145)], between 
tissues (140,159,160,179,212,216), between subcellular 
compartments (140,245), under different growth (media) 
conditions (30), and at different developmental stages 
(179). Rat liver cytosolic and mitochondria1 fumarate hy- 
dratase (EC 4.2.1.2) are both encoded by a single gene; 
however, they do not differ in primary structure, and there- 
fore, this case is distinct from others in which the multiple 
gene products differ in primary structure (245). An interest- 
ing example is G3PDH in D. mekznogaster. Three "iso- 

zymes" have been found in D. melanogaster, and the "iso- 
zymes" exhibit at least some tissue specificity. G3PDH-3 is 
present in early instars, whereas G3PDH-1 and G3PDH-2 
do not appear until the adult stage. All three "isozymes" are 
encoded by a single gene and posttranslational modification 
(deamidation or proteolytic modification) may have been 
responsible for the appearance of the two secondary 
G3PDH isozymes [refer to (18)]. 

Conformational Changes in Enzymes 

The presence of "conformational isomers" of LDH and 
MDH has been suggested as an explanation for "extra" 
bands appearing on zymograms during a study of the cypri- 
nid genus Luxilus (203). The LDH heterotetramer, A2B2, 
was suspected of existing in two forms in their study as well 
as in Crotalus v.  oiridis eye tissue (177), two species of Rhin- 
ichthys (41), Pimephaks promelas (167), Notropis stramineus 
(134), and Nocomis biguttatus (284). Whitt et al. (284) also 
demonstrated "sub-banding" for LDH A+ in Lampetra appen- 
dix. An LDH BIC2 isozyme formed by in vitro molecular hy- 
bridization was suspected of being represented by two forms 
(282). A conformational change was suspected for the for- 
mation of an enolase "isozyme" in Ascaris suum (83). "Iso- 
zyme" 3 was formed from isozyme 2 in vitro by a number of 
agents and 2-mer~a~toethanol had no effect on the iso- 
zymes. Other possible causes for the enzyme conversion 
such as bound ligands were investigated. Although not 
proven conclusively, a conformational change was an expla- 
nation not ruled out (83). In this case, the two isozymes 
were separable by electrophoresis. Conf~xmational changes 
may also result from a posttranslational modification (92). 
Lebherz (142) discussed several accounts of conformational 
isozymes and useful methods for investigating this phenom- 
enon. Lebherz (142) also mentioned that most cases of 
"conformational isozymes" have provided little evidence 
that a conformational change has actually taken place. 
Other aspects of conformational changes were discussed in 
Poly (193). 

In Vitro Modifications 

Many of the posttranslational modific;itions that occur in 
elivo may also occur in vitro, but the cases described below 
resulted from in vitro modifications, which include changes 
occurring in a whole animal from storage through running 
of gels. Hernandez-Juviel et al. (100) reported significant 
alterations in electrophoretic mobilities of glutamate dehy- 
drogenase (EC 1.4.1.2) from prairie rattlesnake, Crotalus el. 

viridis, as a result of varying dilutions of' the enzyme extract. 
They found this phenomenon when using a lithium hydrox- 
ide buffer, but not when using a discontinuous borate buffer 
system. A number of other enzymes examined were unaf- 
fected by dilution. Hernandez-Juviel et al. (100) also dis- 
cussed methods for detecting dilution effects on enzymes 
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and indicated that interpretation of minor mobility difter- 
ences in glutamate dehydrrtgenase (and other glutamate de- 
hydrogenases) should be made with caution. Differences in 
feeding or health of individuals wcre considered possible 
factors affecting in vielo enzyme levels, and even if all the 
samples were weighed and homogenized in equal volumes, 
the enzyme concentrations [nay vary enough to produce dit- 
ferences in electrophoretic mobility and ultimately. :In 
incorrect assignment of nonhomology (100). Starch 
electrophoresis of conalburnin at various concentrations rr- 
vealed an effect ot' protein cclncentration on the number 
of staining fractions (190). Gracy (89) also cited many cases 
of altered enzyme activity levels associateci with aging. Con- 
ditions under which whole animal or protein extracts are 
held can influence electrophoretic results. The presence ot  
secondary isc3zymes on gels has been attributed to the hreak- 
down of proteins due to storage conditions (length of stor- 
age and insufficient temperature) (206), and particillar en- 
zymes are more susceptible co this degradaticln ~ l l an  c~thers 
(261). Dessauer et al. (58) referred to ;I number of causes of 
protein modifications which occur during storage, includ- 
ing: oxidation of sulfhydryl residues, oxidation of ferrous 
iron, deamidation of asparagine residues, rearrangements of 
subunits, and conformational changes. An additional zont. 
of ACP activity resulted from storage ctf blood from twt) 
species of kangaroos; the additional ACP appeared in cmly 
some of the stored samples and was not present in tiesh 
samples from the same individuals previously shown to pos- 
sess the additional ACP band (1 38). Similar results were 
shown for Triturus cristatus carnifrx PGM between fresh and 
stored samples (224); the additional PGM band following 
storage was likely due to sulfhydryl oxidation. Storage of 
pure P-lactoglobulins in a Tris huffer (pH 8.7) resulted In 
up to three additional bands on gels after one day and up 
to eleven additional bands; the extra staining fr:r;lctions 
were considered aggregations of P-lactoglohulins, possihly 
through disulphide bridges (2).  Simili~r results were oh- 
taincd by McKenzie and Sawyer (1 54) and their work sup- 
ported the hypothesis of Akroyd (2) in that n-ethylmalr- 
imide prevented the formation of any adclitio~lal harld... 
Kobayashi rt al. (1  33) Rund additional ;~denos~ne cteami- 
nase isozymes were the result of storage, and the ;ldditicinal 
bands complicated interpretations. The secondary isozymes 
were not present in fresh samples an~1 tre:xtmt.nt with 7- 
~nercaptoethanol greatly reduced the ;lrtifactual hands on 
gels. The secondary isozymes were attrihuted to reacti\.e 
sulfhydryl groups in adenosine dearninase (133). Man\. 
cases of secondary isozyme formation involve hands that ;ire 
very light in staining intensity as comp:>red to the orig~n;al 
"parent" enzyme hand and can give a wide range of staining 
intensities (1 78,206), including very strong bancis ( 13 3 ) ,  
which would likely be interpreted as a distinct gene pro~ii~ct .  
LJreyfus et al. (60) indicated that f(>llowing storage ACl', 
adenosine deaminase, PGM, GPI, pepticlase (EC: 3.4.1 I .  -), 
x-pro dipeptidase (or peptidase I), E(: 3.4.1 3.91, and nucletl- 
side-triphosphate pyrophosphatase exhibited greater anodic 

mobility upon electrophoresis, but the mobility changes 
could be reduced or prevented by a reducing agent (e.g., 
ilithiothreitol). 

Quick-freezing and frozen storage of organisms is a stan- 
dard method for electrophoretic studies; however, Watts 
(277) warned against freezing Molluscans because the hepa- 
topancreas may he ruptured, releasing proteolytic enzymes. 
'lipon thawing the proteolytic enzymes can rapidly degrade 
any enzymes they contact even at the low temperatures 
(==4"(:) at which tissue processing and gel running are car- 
ried out (277). HB polymerization can occur in ziitro, leading 
tc~ increased heteroiygosity (132). Degradation of proteins 
and enzymes ill vitro clue to peptidase activity has also been 
noted ( 1  32). Additictnal fructose-hisphosphate aldolase iso, 
zymes were generated due to proteolytic modifications ar 
hot11 C- and N-termini [review by (142)l. Lebherz (142) 
suggested that tissue homogenation and freezinglthaw ing 
released lysosc>mal proteases which would then act upon the 
enzymeb. Protease inhibitors can be added to extracts in or- 
der to prevent proteolytic degradation and secondary iso- 
;);me formation (128,142). Murphy et al. (176) examined 
stability of muscle MDH, muscle myogen and liver IDHP 
in Srizostedion zlirreum. The electrophoretic patterns of all 
three proteins were unaltered following storage at - 15°C 
for up to 306 Jays or at -70°C for longer than 3 years. 
However, proteins differ in stability and a particular en- 
zyme's stability may differ interspecifically, therefore, the re- 
sults of Murphy et al. ( 1  76) should not be extrapolated to 
the same proteins in other species or to other proteins. The 
tracking dye, bromphenol blue, was responsible for het- 
erogeneity of dihydrofolate reductase (EC I .5.1.3) ( 103). 
Schwartz (222) treated EST allozymes with glyceraldehyde 
and observed gradual changes in electrophoretic mobilities 
of six EST allozymes (initially possessing unique mohilities) 
from cathodal or more cathodal positions to the same tinal 
anoclic gel position. Even though the EST could be con- 
l~erteii to identically-migrating forms, Schwart: (222) 
nlentioned that two allozymes were present and that they 
differed in urea sensitivity. Several reports on the effects 
of ammonium persultate on proteins appeared in 1967 
(73,67,170). Mitchell (170) found multiple banding oi 
C:l(atridiopeptidase R clue to t)xidation by ammoniuru per- 
~ ~ l f a t c ,  a strong oxidant used as a cross-linker in polyacryl- 
.~luide gels, and observed that washing the gels to remove 
residual persulfate greatly reduced or eliminated artifacts. 

Decmpartmentation: A Cause of Secondary Isozyrnes! 

Master5 (164) discussed the subcellular localization of iso- 
zytne:, and suggested that displacement of isozyrnes frclm 
their norrri;~l cornpartrrlent within the cell, which would 
likely happen in standard extraction procedures, could he 
involved 111 posttra~islational modification and subsequent 
fi~rmation of secondary isozymes. Heidrich (98) determined 
that beef liver CAT multiplicity was due to the method 
of i'xtraction employed and that one band of activity was 
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transformed into five when a different extraction technique 
was used that released the enzymes from peroxisomes into 
the surrounding medium. Epigenetic modifications have 
been suggested for CAT "isozymes" in mice as well (108). 
Nelson and Scandalios (180) studied CAT in the marine 
snail, Nassarius obsokta and included several methods for 
the detection of interconvertibility of the CAT isozymes. 
They concluded that the CAT isozymes were not secondary 
isozyrnes. Rothe (214) discussed the concept of intracellular 
compartmentation (not decompartmentation) as a process 
involved in secondary isozyme formation. 

Four isozymes of adenylate kinase have been found in rat 
liver (50); each isozyme appeared to have a fairly distinct 
subcellular localization as determined by differential and 
density gradient centrifugation and subsequent analyses. 
Isozyme I was found only in nuclear fractions, Isozyme I1 
was found in cytosol, Isozyme I11 was predominantly in the 
mitochondria, although limited activity was also found in 
nuclei, and Isozyme IV could not be localized, although it 
could be consistently found in hypotonic extracts. Normal 
extraction procedures disrupted the subcellular distributions 
and released all isozymes into the cytosol (50). It is interest- 
ing that the intracellular distribution of Isozyme IV could 
not be determined due to very low or unstable activity (50), 
but that it seemed to "appear" (became detectable) after 
normal tissue homogenation (and de~om~artmentation of 
Isozymes I and 111). If the suspicions of Masters (164) are 
correct, one might wonder if Isozyme IV was a secondary 
isozyme resulting from changes in Isozymes I or 111 that re- 
sulted from releasing these isozymes from their intracellular 
compartments. Fish (Genypterus chiknsis) liver fructose bis- 
phosphatase is labile to proteolytic modification during 
extraction, and the enzyme's catalytic properties are also 
significantly altered. Modification of the purification 
procedure eliminated the conversion of the "neutral" form 
to "alkaline" form (84). Johnson and Grossman ( 12 1 ) stud- 
ied the formation of tyrosine transaminase "isozymes" utiliz- 
ing a variety of extraction buffers and homogenization tech- 
niques and found that the number and quantity of the 
(1. isozymes" depended on the buffer and method of extrac- 
tion. In vioo, apparently only one true tyrosine transaminase 
is present, and two secondary isozymes are often visualized 
by a number of separation techniques (1 21,122). 

Some lsozymes with quaternary structure may not form 
due to the spatial isolation of subunits (106). Also, the for- 
mation of some heteromultimers may only be facilitated in 
the presence (binding) of a third subunit (including sub- 
units that are normally not bound) that confers some struc- 
tural change allowing the "unusual" joining of subunits 
[e.g., LDH in (282)l. The formation of some isozymes in 
vitro may be the result of breaking down spatial isolation of 
subunits during extraction. Enzyme-containing organelles 
can be isolated and disrupted under conditions that avoid 
secondary isozyme formation (85). 

Enzymes may be denatured or inactivated by poisons se- 
creted by the organism (e.g., plants); the poisons would not 

be harmful in vivo to the source organism due to compart- 
mentation, but destruction of the cells and vesicles in vitro 
releases the poison. The effects could result in problems 
with data interpretation (31,129,206). 

Detection of Posttranslational Modifications 

Direct sequencing of proteins to determine amino acid com- 
position will provide valuable data in itself and also will 
point out possible sites were deamidation, glycosylation or 
phosphorylation can occur (15,273). Walsh et al. (271) dis- 
cussed ~roblems associated with determining covalently 
modified residues in conventional sequence analysis proce- 
dures in which modified residues may coelute with another 
amino acid in chromatographic analyses or may have the 
attached groups cleaved, thus reverting it back to its original 
base amino acid. Conventional amino acid analysis (Ed- 
man degradation) involves acid hydrolysis which destroys 
many posttranslationally formed residues; therefore, stan- 
dard amino acid sequencing may not detect many posttrans- 
lational modifications (208,271,272,289). Wold (289) and 
Chin and Wold (39) discussed research aimed at the use of 
proteases in detecting modified residues; proteases may 
allow for separation of the residues without disrupting the 
modifications of the residue. Many modifications (both ad- 
ditions and deletions) are dependent upon the flanking 
amino acids present. Therefore, if a side chain modification 
is dependent on one or more of the flanking residues, the 
act of separation itself, regardless of how it is achieved, may 
cause the loss of the attached side chain molecule(s). If this 
can occur, identification of some posttranslational modifi- 
cations would be even more difficult in some cases. 

Recently, new techniques have become available for the 
identification of posttranslationally modified residues. Par- 
ticularly useful are the techniques fast atom bombardment 
mass spectrometry, gas chromatography/mass spectrometry, 
high performance liquid chromatography and ion-exchange 
chromatography (4,32,38,56,249,272,290,291). Walsh et al. 
(271) suggested that multiple techniques be employed in 
sequence analysis to increase the likelihood of detecting 
modified residues. Protein structure determinations based 
on gene or cDNA data may be biased without considering 
posttranslational modification effects on the final protein 
product (271). The direct genetic similarities will be re- 
vealed more readily by comparison of the primary structures. 
Studies using cDNA may conflict with protein electropho- 
retic studies due to posttranslational modification, which 
will not be revealed by cDNA analysis and will potentially 
reflect differences based on electrophoretic analyses. 

Usefulness of Posttranslational Modifications 

Posttranslational modifications may have some value in sys- 
tematic studies as do tissue-specific and ontogenetic expres- 
sion (177). The value of posttranslational modification lies 
in those that are enzymatically catalyzed and controlled by 
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a modifying gene or if the posttranslational modificaticm 
reveals a cryptic polyn~orphism [e.g., GP1 in ( 1  10,173)j. In- 
deed, a polymorphic protease gene has been found in E.  
coli; the nuinher and quantity of ALP "isozymes" depends 
upon whether the normal protease-encoding gene or a mu- 
tant  gene is present (61). T h e  protease acts on some of thc 
ALP polypeptides by cleaving the  N-terminal arginine resi- 
due (61,221), and the  phenomenon was referrecl to  as 
polymorphic posttranslational modificat~on. T h e  rate of 
acetylation of the drug, p-aminohenzoic acid, by an N- 
acetyltransferase was found to he dependent on  the geno- 
type of a n  individual for the acetyltransferase (279). Coch-  
rane and Richmond [(43), p.1821 stated that "If auch 
posttranslational modification systems are h u n d  t o  he rela- 
tively common, and if in  fact polymorphisms for loci con- 
trolling modification do exist in natural popularions, they 
will provide a new sort of genetic variation which can he 
readily measured." T w o  enzymes, XDH and AO, are pn<- 
translationally modified by at  least two modifier loci in D. 
melanogaster (71). High levels of polymorphism may he due, 
in part, to  the  effects of modifier loci o n  the products of 
structural genes (71,120,292). 

CONCLUSION 

Electrophoresis has been and should continue to  he a useful 
tuol for taxonomy, systematics and population genetics. 
Additional attention to the known causes of nongenetic 
and genetically-controlled posttranslational modifications 
should improve electrophoretic data and conclusions drawn 
from the data. W e  need to eliminate the  environmental and 
other effectors causing phenotypic changes, either in eriuo 
or  i n  uitro, via posttranslational modification or  other pro- 
cesses i n  order to  compare the  true genetic relationships of 
the  organisms under study. Elucidation of the mechanisms 
governing the  appearance of secondary isozymes (i.e., tran- 
scriptional or posttranscriptional) would be of great interest. 
A few areas in which further study would be beneficial are: 

1. Develop methods that control in tlitro modification (re- 
ducing agents are used routinely). 

2. Various methods of extraction shoutd he tested tt) indi- 
cate how decompartmentation effects secondary isozyrne 
formation. 

3. Resolve posttranslational modifications to  the enzyrnes 
commonly used in inolecular systematics. 

4. Increase knowledge of primary and quaternary structures 
for t h e  enzyrnes commonly assayed (especially EST); this 
should include prorein sequencing techniques that are 
sensitive in detecting posttranslational ~nodifications. 

"Thus, until further data become available, it seems prudent 
to  regard the existence of wide-spread post-translational 
modification as a possibility worthy of careful consider- 
ation" [(71), p. 7181. 
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